Cloudy with a Chance of Poaching: Adversary Behavior Modeling and Forecasting with Real-World Poaching Data
نویسندگان
چکیده
Wildlife conservation organizations task rangers to deter and capture wildlife poachers. Since rangers are responsible for patrolling vast areas, adversary behavior modeling can help more effectively direct future patrols. In this innovative application track paper, we present an adversary behavior modeling system, INTERCEPT (INTERpretable Classification Ensemble to Protect Threatened species), and provide the most extensive evaluation in the AI literature of one of the largest poaching datasets from Queen Elizabeth National Park (QENP) in Uganda, comparing INTERCEPT with its competitors; we also present results from a month-long test of INTERCEPT in the field. We present three major contributions. First, we present a paradigm shift in modeling and forecasting wildlife poacher behavior. Some of the latest work in the AI literature (and in Conservation) has relied on models similar to the Quantal Response model from Behavioral Game Theory for poacher behavior prediction. In contrast, INTERCEPT presents a behavior model based on an ensemble of decision trees (i) that more effectively predicts poacher attacks and (ii) that is more effectively interpretable and verifiable. We augment this model to account for spatial correlations and construct an ensemble of the best models, significantly improving performance. Second, we conduct an extensive evaluation on the QENP dataset, comparing 41 models in prediction performance over two years. Third, we present the results of deploying INTERCEPT for a one-month field test in QENP a first for adversary behavior modeling applications in this domain. This field test has led to finding a poached elephant and more than a dozen snares (including a roll of elephant snares) before they were deployed, potentially saving the lives of multiple animals including endangered elephants.
منابع مشابه
CAPTURE: A New Predictive Anti-Poaching Tool for Wildlife Protection
Wildlife poaching presents a serious extinction threat to many animal species. Agencies (“defenders”) focused on protecting such animals need tools that help analyze, model and predict poacher activities, so they can more effectively combat such poaching; such tools could also assist in planning effective defender patrols, building on the previous security games research. To that end, we have b...
متن کاملPredicting poaching for wildlife Protection
Wildlife species such as tigers and elephants are under the threat of poaching. To combat poaching, conservation agencies (“defenders”) need to (1) anticipate where the poachers are likely to poach and (2) plan effective patrols. We propose an anti-poaching tool CAPTURE (Comprehensive Anti-Poaching tool with Temporal and observation Uncertainty REasoning), which helps the defenders achieve both...
متن کاملDivide to Defend: Collusive Security Games
Research on security games has focused on settings where the defender must protect against either a single adversary or multiple, independent adversaries. However, there are a variety of real-world security domains where adversaries may benefit from colluding in their actions against the defender, e.g., wildlife poaching, urban crime and drug trafficking. Given such adversary collusion may be m...
متن کاملHandling Payoff Uncertainty with Adversary Bounded Rationality in Green Security Domains
Research on Stackelberg Security Games (SSG) has recently shifted to green security domains, for example, protecting wildlife from illegal poaching. Previous research on this topic has advocated the use of behavioral (bounded rationality) models of adversaries in SSG. As its first contribution, this paper, for the first time, provides validation of these behavioral models based on real-world da...
متن کاملHandling Payoff Uncertainty in Green Security Domains with Adversary Bounded Rationality
Research on Stackelberg Security Games (SSG) has recently shifted to green security domains, for example, protecting wildlife from illegal poaching. Previous research on this topic has advocated the use of behavioral (bounded rationality) models of adversaries in SSG. As its first contribution, this paper, for the first time, provides validation of these behavioral models based on real-world da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017